

Lal Bahadur Shastri Mahavidyalaya, Dharmabad-431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Program: M.Sc. FY Semester I CBCS

Subject: Chemistry

Course Code: CH- 411 Paper Title: Inorganic Chemistry – I Paper – I

Unit No.	Unit Name	Topics	Unit-wiseOutcome
Ι	Reactions of metal complexes (Part first)	Lible and Inert complexes.VBT explanation of libility and inertness. Taube's explanation of libility and inertness. Ligand substitution reactions. SN ¹ : substitution, nucleophilic, unimolecular mechanism (Dissocitive mechanism): Introduction, Characteristics, Example. SN ² : substitution, Nucleophilic, Bimolecular Mechanism (Associative	taking place in coordination complexes such as substitution reactions, redox reactions etc. and the various factors affecting to rates of these reactions.
Ш	Chemistry of nanomateri als and nano science	Introduction: Terminology, optical properties of nonmaterials, characterization methods, top down and bottom-up fabrication, templeted synthesis using frameworks, supports and substrates, self assembled nanostructures, control of nanoarchitecture, one dimensional control, two-dimensional control, three-dimensional control, bioinorganic nanomaterials, DNA and nanomaterials, natural and artificial nanomaterials and bio nanocomposites.	in analyzing structures of simple molecules

III	Electronic	Introduction, Basis of electron absorption	To understand
	Absorption	Spin orbit coupling: i) Russell-sounder coupling	how to construct
	spectra of	ii) j-j- coupling	molecular
	transition	Microstates and its calculations from	orbital diagrams
		i) the number of orbital and number of electron ii)	for simple
	metal	Orbital degeneracy, spin degeneracy and number of	molecules as
	complexes	unpaired electrons Term Symbols: Rules for	well as
		determining term symbols, Hund's rule for deciding	coordination
		the relative energies of term symbols (Hund's First,	complexes
		Second And third rule) Determination of ground	_
		States, Hole formation, Symmetry species of terms	
		Selection rules: I) Laporte selection rule ii) Spin	
		section rules Spectra of transition metal	
		complexes: splitting of terms, Orgel diagrams for	
		tetrahedral and octahedral complexes, Orgel	
		correlation diagrams, Tanabe – Sugano correlation	
		diagrams (T-S diagrams) for d2,d3 configurations,	
		Comparison between Orgel and T-S diagrams	
		.Nephelauxetic effect, Nephelauxetic ratio(β) and	
		Nephelauxetic series. Charge transfer spectra:	
		LMCT, MLCT and charge transfer in complexes	
		having metal in mixed valence state (Metal to metal	
		charge transfer) Comparison between d-d transition	
		and charge transfer spectra. Magnetic properties of	
		complexes: i) cooperative magnetism ii) spin	
		crossover complexes.	

Specify Course Outcome: Draw molecular orbital diagrams for sigma and pi bond formation in coordination complexes and will be able to understand and explain the difference between respective molecular orbital diagrams

Specify Program Outcome: Learn various approaches in analyzing structures of simple molecules.

Signature of Teachers: Mr. S. L. Nakkalwar

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr H. M. Kasralikar

Department: Chemistry

Program: M. Sc. FY Semester I

Subject: Chemistry

Paper Title: Organic Chemistry - II P-II

Unit No.	Unit Name	Topics	Unit-wise
			Outcome
Ι	Nature of Bonding in Organic Molecules	Delocalised chemical bonding –conjugation, cross-conjugation, resonance, hyperconjugation, tautomerism. Aromaticity in benzenoid and non-benzenoid compounds, alternant and non-alternant hydrocarbons, Huckel's rule, energy level of π -molecular orbitals, annulenes, anti-aromaticity, homo- aromaticity. Study of Structure of compounds crown ether complexes, cryptands, inclusion compounds, cyclodextrins, catenanes and rotaxanes.	concept of Bonding in Organic Molecules
Π	Stereochemistry	Stereo chemical principles: Enantiomeric relationships, Diastereomeric relationships, R and S, E and Z nomenclature, Dynamic stereochemistry, Prochiral relationships. Homotopic, enantiotropic, groups and faces, Stereo-specific and stereo-selective reactions. Conformational analysis of halo, hydroxy and methyl mono and disubstituted Cyclohexane, decalins, effect of conformation on reactivity, conformation of glucose and fructose. Elements of symmetry, chirality, molecules with more than one chiral center, threo and erythron isomers, optical purity, enantiotropic, and diasteretopicatoms, groups and faces, stereospecific and stereoselective synthesis. Asymmetric synthesis. Optical activity in absence of chiral carbon (biphenyls, allenes and spiranes), chirality due to helical shape, Methods of resolution and racemic modification.	concept of Stereochemi stry and to identify the Stereo chemical reactions

III	Reaction	Types of mechanism, types of reaction, Familiarize the
	Mechanism:	thermodynamic and kinetic requirements, various
	Structure and	kinetic and thermodynamic control, theoretical
	activity	Hammond's postulate. Potential energy principles about
		diagrams, transition state and intermediates, the reaction and
		methods of determining mechanism, isotope mechanism
		effects. Generation, structure and stability of
		carbocations, carbanions, free radicals,
		carbenes and nitrenes. Effect of structure on
		reactivity – Resonance and field effect, steric
		effect, quantitative treatment. The Hammett
		equation and linear free energy relationship,
		substituents and reaction constants. Taft
		equation
IV	Aliphatic	The SN 2, SN 1, mixed SN 1 and SN 2 and To understand
	Nucleophilic	SET mechanism. The neighboring group the nucleophilic
	Substitution	mechanism, neighboring group participation substitution
		by π and σ bonds, anchimeric assistance. The reactions and their
		SN i mechanism. Nucleophilic substitution atmechanisms of
		an allylic, aliphatic and a vinylic carbon aliphatic
		Reactivity effects of substrate structure, compounds.
		attacking nucleophile, leaving group and
		reaction medium. Phase transfer catalysis,
		ambident nucleophile, regioselectivity,
		Classical and nonclassical carbocations,
		phenonium ions, norbornyl system.
V	Aromatic	SN ^{Ar} , SN1, benzyne and SRN 1 mechanism. To know the
	nucleophilic	Reactivity – effect of substrate structure nucleophilic
	Substitution	leaving group and attacking nucleophile. substitution
		Sommelet-Hauser and Smiles rearrangements. reactions of
		Aromatic
		compound

Specify Course Outcome: Learn the concept of Stereochemistry and to identify the Stereo chemical reactions,

explain the various problems of aromaticity, homoaromaticty and antiaromaticity, familiarize the various types of Substitution reactions and their mechanism gain knowledge of free radical reactions and justifies the various effect of substrate.

Specify Program Outcome: Understand the various types of Reaction Mechanism.

Signature of Teachers: Dr. H. M. Kasralikar

Paper Title: Physical Chemistry - I

Lal Bahadur Shastri Mahavidyalaya, Dharmabad- 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. S. B. Patwari

Department: Chemistry

Program: MSc FY Semester –I CBCS

Code: CH–413

Subject: Chemistry Course Paper –III

Unit No.	Unit Name	Topics	Unit-wise Outcome
Unit-	Quantum	-	Explain basic
1	Chemistry	Mechanical Results: a) The postulates of	-
-	Chemistry		and postulates of
		b) Schrödinger equation in Laplacian and	
		Hamiltonian form. Significance of Eigen –	
		values and Eigen functions. Significance of Ψ and Ψ 2.	
		c) Discussion of solutions of the Schrödinger	
		equation to i. Particle in one dimensional box,	
		ii. Particle in three-dimensional box, iii.	
		Harmonic oscillator, iv. The rigid rotator and v.	
		Hydrogen and Hydrogen like systems. d)	
		Orthogonality and normalization of wave	
		functions. e) Numericals on (c) and (d). B)	
		Approximate Methods:	
		a) The variation theorem, linear variation	
		principle.	
		b) Perturbation theory (first order and	
		nondegenerate). C. Angular Momentum:	
		a) Ordinary angular momentum, generalized	
		angular momentum, eigen functions for	
		angular, Momentum, eigen values of angular	
		momentum.	
		b) Spin, anti-symmetry and Pauli's exclusion	
		principle, commutation elation, Zeeman	
		splitting, Spin orbital coupling and R-S	
		couplings. c) Operator using ladder operators,	
		addition of angular momentum.	

π	Dhage Dule	a) Description of phase rule and terms	Explain the
II	Phase Rule	a) Recapitulation of phase rule and terms	-
		involved in it. b) Three component system:	
		representation of ternary systems. c) Partially	
		miscible three liquid systems: - 1) system	
		composed of three liquid components, one	
		partially miscible pair, two partially miscible,	
		three partially miscible pairs. 2) System	
		composed of two solid and a liquid component:	
		- formation of eutectic systems, crystallization	
		of pure components only, formation of binary	r
		compounds, one double salt formation.	
III	Thermodynamics	A. Classical Thermodynamics:	Good overview of
		a) Brief resume of concepts of laws of	laws of
		thermodynamics. Free energy and entropies.	thermodynamics,
		b) Partial molar, partial molar free energy	partial molar
		chemical potential, partial molar volume and	-
			different
		μ	systems and
		0	concept and
		determination of fugacity by graphical method	
		and from equation of stated) non-ideal systems:	
		Excess functions for non-ideal solutions.	systems
		e) Activity, activity coefficient. Debye-Huckel	•
		theory for activity coefficient of electrolytic	
		solutions, determination of activity and activity	
		coefficients by 1) Solubility 2) E.M.F. method.	
		3) vapour pressure method, Ionic strength.	
		B. Statistical Thermodynamics: a) Concept	-
		of distribution, thermodynamics probability,	
		ensemble averaging, postulates of ensemble averaging. Canonical, grand canonical and	
		microcanonical ensembles. b) Partition	
		functions: Translational, rotational, vibrational	
		and electronic partition functions. calculation	
		of thermodynamic properties in terms of	
		partition functions.c) Applications of partition	l
		functions. d) Numericals on A(e), B(b)	

IV	Crystallography	a) Solid state defects. b) Semiconductors, N	Explain the
		and P type, effect of temperature on N and P	concept of
		type Semi conduction. c) Packing of uniform	Crystallography
		spears, octahedral and tetrahedral voids(holes),	with example
		close packing of spear. d) Isomorphism, lattice	with example
		energy and born haber cycle.	
V	Electrochemistry I	a) Anomaly of strong electrolytes, Deby-	Can relate and
		Huckel theory, Onsager equation, & its	explain the
		verification wine effect, Deby falkenhagen	-
		effect, ion solvent, interactions.	production in
		b) Thermodynamics of electrified interface	1
		equation, Derivation of electro capillary,	
		Lippmann equation (surface excess)	Onsager's
		LIDDINALIII EQUALION I SUITACE EXCESSI	Unsager s

Specify Course Outcome: Explain basic concepts, laws and postulates of quantum mechanics, describe different wave functions and operators, the Schrodinger wave equation for the calculation of Energies of rigid rotor and harmonic oscillator and solve it for hydrogen atom, explain the concept of angular momentum describe the electronic structure of atoms good overview of laws of thermodynamics, partial molar properties for different systems and concept and examples of non-ideal systems discuss concept distribution with examples, they will be able to explain most probable distribution and thermodynamic probability, concept of partition functions and its significance and can relate and explain the entropy production in different system and understand Onsager's relations.

Specify Program Outcome: Solve problems related to quantum chemistry, will have large horizon of critical thinking and analytical reasoning.

Signature of Teachers: Dr. S. B. Patwari

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. N.S. Kaminwar

Program: M. Sc. FY Semester-I

Department: Chemistry

Course Code: CH-414

Subject: Physical Method in Chemistry

Paper Title: P-IV

Unit No.	Unit Name	Topics	Unit-wise Outcome
Ι	Symmetry and Group Theory in Chemistry	Symmetry elements and symmetry operation, definitions of group, subgroup, relation between orders of a finite group and its subgroup. Conjugacy relation and classes. Point symmetry group. Schonfiles symbols, representations of groups by matrices (representation of the Cn, Cnv, Cnh, Dnh etc. groups to be worked out clearly.) Character of a representation. The great orthogonality theorem (without proof) and its importance. Character tables C1h, C2V, C3V and their use.	symmetry elements in a molecule.
Π	Computer for Chemist	Basic structure and functioning of computers with a PC as an illustrative example. Memory, I/O devices.	To understand the computer for Chemist

Π		Bragg condition. Miller indices, Laue method, Bragg method, Debye-Scherrer method of X-ray structural analysis of crystals, index reflections, identification of unit cells from systematic absences in diffraction pattern. Structure of simple lattices and X-ray intensities, structure factor and its relation to intensity and electron density, phase problem. Description of the procedure for an X-ray structure analysis, absolute configuration of molecules, Ramachandran diagram. Numerical on Braggs equation. $n\lambda=2dSin\theta$	Diffraction
IV	Electron Diffraction	Scattering intensity vs. Scattering angle, Wierl equation, measurement technique, elucidation of structure of simple gas phase molecules with suitable examples.	Deal with degenerate and non- degenerate representations.
V	Neutron Diffraction	Scattering of neutrons by solids and liquids, magnetic scattering, measurement techniques	Understand the Neutron Diffraction

Specify Course Outcome: Understand how to recognize symmetry elements in a molecule. Assign the point group to a molecule. Deal with degenerate and non-degenerate representations.

Specify Program Outcome: To introduce the concepts of symmetry. Study the concept of group theory for understanding molecular representations. To provide an introductory treatment of bonding theories, electronic and vibrational spectroscopy. Molecular Symmetry, Symmetry operations and symmetry elements: Plane of symmetry, Proper/Improper Axis of symmetry, Inversion center, Identity element.

Signature of Teachers: Dr. N.S. Kaminwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Subject: Chemistry

Program: M.Sc. FY Semester-IICBCS

Course Code: CH-421

Paper Title: Inorganic Chemistry Paper – VI

Unit No.	Unit Name	Topics	Unit-wise Outcome
Ι	Reaction of Metal Complexes (Part second)	Substitution reactions of square-planar complexes. Evidence for associative type SN2 mechanism. Trans effect, applications of trans effect. Theories of trans effect, the polarization theory, evidences in favour of the polarization theory, defect of this theory, the Pibonding theory. CIS effect.	To learn the basic concept about substitution reactions of metal complexes
II	Catalyst.	Introduction, General principle and mechanism of catalytic reaction. Types of catalysts. Homogeneous Catalysis: Hydrogenation of alkenes, Hydroformulation, Methanol Carbonylation, Wacker oxidation of alkenes, Palladium-catalyzed C-C bond forming reaction, Heterogeneous catalysis: The nature of Heterogeneous catalysts, ammonia synthesis, Sulfur dioxide oxidation, Fischer-Tropsch Synthesis, Alkene Polymerization, New directions in heterogeneous catalysis such as Tethered catalysts.	Understand the homogeneous and heterogeneous catalyst and its applications
III	Bioinorganic Chemistry:	Biological importance of essential and non-essential elements. Na/K Pump. Metalloporphyrin's: Structure of porphyrin molecule. Hemoglobin: Structure, function of hemoglobin. Myoglobin: Structure & function. Difference between hemoglobin & Myoglobin. Chlorophyll: Structure & function, Photosynthesis PS-I & PS-II. Electron carrier proteins in biological system: i. Iron sulfur proteins - Rubredoxin, ferrodoxin. ii. Cytochrome: Structure & functionoid. Iron storage protein: Ferritin. Iron transporting biomolecule: Transferrin, siderophores (non-Protein), hemerythrin and hemocyanins. Biological enzymes: Nitrogenase and Superoxide dismuthases. Vitamin B12(Cynocobalanine), structure and function.	Learn the biological applications of essential and non- essential elements

IV	Structural	Vibrational spectroscopy:	To know the basic
	methods in	Introduction Physical basis requirement for	principles of
	inorganic	vibrational spectroscopy. Number of modes of	Vibrational,
	chemistry	vibration. Force constant concept in vibrational	electron spin
		spectroscopy. Application of vibrational spectroscopy	resonance &
		with respect to change in spectra of donor molecule	Mossbauer
		upon complexation.	Spectroscopy.
		b. Electron spin resonance spectroscopy:	
		Introduction, Basic principle Hyperfine structure of	
		ESR in isotropic system (Examples). EPR spectra of	
		transition metal complexes as single crystals. Nuclear	
		spin of metal ion. Reference compound in ESR.	
		Frequency in ESR and g-splitting factor. (Numerical)	
		c. Mossbauer spectroscopy:	
		Introduction, Basic principle, Condition for the	
		Mossbauer spectroscopy Parameter from Mossbauer	
		spectra, isomer shift and electrical quadruple	
		interactions. Structural deduction.(Illustration)	
		Mossbauer spectra of inorganic compound/complexes	

Specify Course Outcome: Students should get the knowledge about the substitution reactions and mechanisms of metal complexes. Information about the type of catalyst and their applications. Use of vibrational spectroscopy, electron spin spectroscopy and Mossbauer spectroscopy to determine the structure of inorganic compounds and complexes.

Specify Program Outcome: Knowledge about the reactions of metal complexes and technologies used to determine the structure of complexes.

Signature of Teachers: Mr. S. L. Nakkalwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

2022-23

Name of Teacher: Dr. H. M. Kasralikar & Dr. N. S. Kaminwar

Department: Chemistry
Subject: Chemistry

Program: M.Sc. FY Semester-II

Course Code: CH-422

Paper Title: Organic Chemistry P-VI

Unit Numb er	Unit Name	Topics	Unit- wise Outcom e
I	Aliphatic Electrophilic Substitution	Bimolecular mechanism – SE ² & SE ⁱ . The SE ¹ mechanism, electrophilic substitution accompanied by double bond shift. Effect of substrates, leaving group and the solvent polarity on the reactivity.	To understand the aliphatic substitution reactions.
Π	Aromatic Electrophilic Substitution	The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The ortho/para ratio, ipso attack. Quantitative treatment of reactivity in substrates and electrophiles. Diazonium coupling, Vilsmeir reaction, Gatter-Koch reaction.	Obtain an outline about mechanism of Aromatic Substitution reactions
III	Addition to Carbon Carbon Multiple Bonds:	Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals, regioselectivity and chemo selectivity, orientation and reactivity. Addition to cyclopropane ring. Hydroboration, Michael reaction. Sharpless asymmetric Epoxidation	Gain the knowledge of addition reaction between a carbon atom and double bonded carbon compounds
IV	Addition to Carbon-Hetero Multiple Bonds:	Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acids, esters and nitriles. Addition of Grignard reagents, Organo-zinc and organo- lithium reagents to carbonyl and unsaturated carbonyl compounds. Wittig reaction. Mechanism of condensation reaction involving enolates- Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkins and Stobbe reaction	atom and double bonded Carbon

12

V	Pericyclic Reactions:	Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3- butadiene, 1,3,5-haxatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions conrotatory and disrotatory motions, 4n, 4n +2 and allyl systems. Cycloadditions –antarafacially and suprafacial additions, 4n and 4n +2 systems, 2+2 addition of ketenes, 1,3 dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements -Suprafacial and antarafacial shifts of H, sigmatropic shifts involving carbon moieties, 3,3 and 5,5- Sigmatropic rearrangements. Claisen, Cope and aza-Cope rearrangements	Understand the skill of solving problems of pericyclic reactions.
VI	Photochemistry	Principles–photochemical theory, electronic excitation, singlet and triplet states, Jablonski diagram. Energy transfer, quantum efficiency. a) Photochemistry of carbonyl compound: Photoreduction, Norrish type–I & II, Paterno- Buchireaction. b) Photochemistry of α , β -unsaturated ketones.c) Photochemistry of olefins: cis-trans isomerism.d) Miscellaneous photochemical reaction: Photo-fries reaction of anilides, Photo rearrangements, Barton reaction singlet molecular oxygen reaction Photochemical formulation of smog photo-degradation of polymers,photochemistry of vision, n π - p π rearrangement.	Understand the Photochemical reactions and mechanism

Specify Course Outcome: Gain the knowledge of addition reaction between a hetero atom and double bonded carbon compounds. Learn familiar name Reaction. Obtain an outline about mechanism of Aromatic Substitution reactions. Know synthetically the process relevant Organic –Chemical reactions and be able to discuss the mechanism of these reactions. Get the clear picture of about photochemical reactions

Specify Program Outcome: Gain the knowledge of addition reaction between a hetero atom and double bonded carbon compounds and learn familiar name Reaction

Signature of Teacher: Dr. N. S. Kaminwar Dr. H. M. Kasralikar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

• •

Pro-forma for program and course outcomes (2.6.1) 2022-23 _____

Name of Teacher: Dr.S.B.Patwari

Department: Chemistry Course Code: CH 423

Program: M.Sc.FY Semester-II Subject: Chemistry Paper title: Physical Chemistry P-VIII

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
Ι	Surface Chemistry	 A. Adsorption: a) Surface tension, capillary action, pressure difference across curved surface(Laplace equation). b) Gibbs adsorption isotherm. c) BET equation and estimation of surface area. d) Surface films on liquids (Electro-kinetic phenomenon) and catalytic activity at surfaces. B. Micelles: a) Surface active agents, classification of surface-active agents. b) Micellization, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, counter ion binding to micelles, thermodynamics of micellization - phase separation and mass action models C. Macromolecules: a) Polymers - definition, types of polymers, electrically conducting, fire resistant, liquid crystal polymers. b) kinetics of polymerization, mechanism of polymerization. c) Difference between polymers and macromolecules. d) Molecular mass, number and mass average molecular mass, molecular mass 	Understand the basic concepts and properties of surfactants and macromolecule.
Π	Electroch emistry- II:	 b) Exchange current density, Derivation of Butler- Volmer equation, Tafel plot. c) Semi conductor interface. Theory of double layer at Semiconductor, electrolyte solution Interface, effect of 	

		$\sum \mathbf{M} (1 - 1 - 1 + 1 + 1 + 1 + 1) \mathbf{D}^{*} (0 + 1 + 1)$	
		a) Methods of determining rate laws $-i$) Differential	
	Chemical	method and ii) Fractional change method.	Understand the
	Dynamics	b) Theories of reaction rates $-i$) collision theory of	kinetics of complex
III		reaction rates, steric factor, ii) Transition state theory,	reactions, catalysis
		thermodynamic formulation of TST.c) Ionic reactions,	etc. And Perform
		kinetic salt effects. d) Dynamic chain (Kinetics of the	the calculations and
		reactions, thermal/photochemical) –i) pyrolysis of	solve the numerical
		acetaldehyde, ii) decomposition of ethane, iii)	of electrochemistry
		hydrogenchlorine reaction, iv) hydrogen-bromine	and chemical
		reaction.e) Oscillatory reactions (Belousov-	kinetics
		Zhabotinsky reaction).f) Enzyme catalysis, kinetics of	
		enzyme reactions, Michalis - Menten equation.g)	
		General features of fast reactions, study of fast	
		reaction by flow method. Flashphotolysis and the	
		nuclear magnetic resonance method.h) Dynamics of	
		unimolecular reactions - i) Lindemann hypothesis ii)	
		Hinshelwood theory iii) K-R-R treatment and iv)	
		slater's theory . i) Numricals on (a) and (b).	

Specify Course Outcome: Understand the basic concepts and properties of surfactants and macromolecules. State and apply different laws, principles, theories related to the electrochemistry of the solutions and discuss and apply the information about corrosion, its monitoring and presentation, distinguish different theories of reaction rates and understand the kinetics of complex reactions, catalysis.

Specify Program Outcome: Develop skill in problems solving, critical thinking and analytical reasoning.

Signature of Teacher: Dr. S. B. Patwari

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr.N.S.Kaminwar

Department: Chemistry

Program: M. Sc. FY Semester-II

Subject: Chemistry

Course Code: CH -428 4 Paper Title: Principles of Spectroscopy Paper -IX

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	1.Unifying Principles	electromagnetic radiation with matterabsorption, emission, transmission,	Explain the basic principles of rotational, vibrational, electronic and Raman spectroscopy
II	2. Mircowave Spectroscopy		factors that influence
III	3. Vibrational Spectroscopy	energies of diatomic molecules, zero-point energy, force constant and bond strengths; an harmonicity, Morse potential energy diagram, vibration-rotation spectroscopy, P, Q, R,	rule for rotational, Vibrational and electronic spectroscopy. and determine the vibrations for a molecule and identify whether they are active in infrared and/or Raman spectroscopy.

		exclusion principle. Resonance Raman Spectroscopy.	
IV	Electronic Spectroscopy	 A. Atomic Spectroscopy: Energies of atomic orbitals, vector representation of momenta and vector coupling, spectra of hydrogen atom and alkali metal atoms. B. Molecular Spectroscopy: Energy levels, molecular orbitals, vibronic transitions, vibrational progressions and geometry of the excited states, Franck-Condon principle, electronic spectra of polyatomic molecules. Emission spectra; radioactive and non-radioactive decay, internal conversion, spectra of transition metal complexes, charge-transfer spectra. C. Photoelectron Spectroscopy: Basic principles; photo-electric effect, ionization process, Koopman's theorem 	molecular electronic spectra and deduce the electronic structure information in ground and excited states of diatomic molecules.
V	Magnetic Resonance Spectroscopy	 A. Nuclear Magnet ic Resonance Spectros copy: Nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its measurements. Factors influencing chemical shift. Deshielding, spin-spin interactions, factors influencing coupling constant J. Classification (ABX, AMX, ABC, A2B2 etc.) spin decoupling; basic ideas about instrument. NMR studies of nuclei other than proton - 13C and 19F. FT NMR, advantages of FT NMR, use of NMR in medical diagnostics. B. Electron Spin Resonanace Spectroscopy: Basic principles zero field splitting and Karmer's degeneracy, factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, spin Hamiltonian, spin densities and McConnell relationship, measurement techniques, applications. C. Nuclear Quadrupole Resonance Spectroscopy: Quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant splitting. Applictions 	-

Specify Course Outcome: Explain the basic principles of rotational, vibrational, electronic and Raman Spectroscopy, identify and explain factors that influence the strength and frequency of peaks in the Microwave, IR spectra, selection rule for rotational, Vibrational and electronic spectroscopy, the difference between Stokes and anti-Stokes lines in a Raman spectrum and justify the difference in

intensity between Stokes and anti-Stokes lines and able to interpret the molecular electronic spectra and deduce the electronic structure information in ground and excited states of diatomic molecules.

Specify Program Outcome: Explain the basic principle of spectroscopy

Signature of Teacher: Dr. N.S. Kaminwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Subject: Chemistry

Program: M.Sc. FY Semester- II CBCS

Course Code: LCH- 411

Unit	Unit Name	Topics	Unit-wise
No.			Outcome
Unit-	Laboratory	1. Record and viva voce 05	Students will be
1	Course I	2. Detection of three acidic and three basic radicals	able to learn
	(Inorganic	from a given salt mixture.	synthesis
	Chemistry)	Report the spot test of radicals. (At least five	methods for the
		mixtures)	preparation of
		3. Preparation of metal complexes and haracterized	various
		by spectral analysis.a. Tris-(thiourea) copper(I)	coordination
		sulphate.b. Bis (acetylacetanato) copper (II)	complexes and
		c. Potassium trioxalato ferrate(III). d. Cis -	will understand
		potassium dioxalato diaquo chromate(III)	the basic
		e. Bis(dimetyl glyoxime) Nickel (0) Complex	principles
		f. Hexammine nickel(II) Chloride. g. Tris(Acetyl	involved in
		acetanato) Magnease(III). i. Schiff's base copper	operational
		(II) Complexes. 4. Separation and estimation of one	procedures
		of the metal ion volumetrically.	while
		a. Fe+3 and Zn+2 b. Ni+2 and Cu+2	synthesizing
		c. Cu+2 and Ba+2 d. Ni+2 and Zn+2	the
		e. Cu+2 and Fe+2 f. Ba+2 and Mg+2	complexes to
			a deeper
			level.

Paper Title: Laboratory Course – I (Inorganic Chemistry) Paper – XI

Specify Course Outcome: Learn synthesis methods for the preparation of various coordination complexes and will understand the basic principles involved in operational procedures while synthesizing the complexes to a deeper level and to characterize a synthesized complex using various characterization techniques such as melting point determination, solubility behavior in various solvents, molar conductance, magnetic susceptibility measurements, IR and electronic spectra etc, While following all these methods he/she will be able to understand operation procedures, care that should be taken while using these techniques and the practical utility of these techniques.

Specify Program Outcome: Understand the basic principles lying behind inorganic analysis such as precipitation, solubility product, buffer solution, applications of buffer solution in maintaining pH,

common ion effect etc. and this much information will be helpful while analyzing any inorganic compound in future

Signature of Teachers: Mr. S. L. Nakkalwar

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr H.M. Kasralikar

Department: Chemistry

Program: M. Sc. FY Semester II

Subject: Chemistry

Course Code: CH-412 Paper Title: Laboratory Course II (Organic Chemistry) Paper-XII

Unit No.	T 1 * 4	Tarias	Unit miss Outcome
190.	Unit Name	Topics	Unit-wise Outcome
	Itallic	1. Techniques:	Learn the pilot separation of
Ι	Laboratory	a) Simple distillation. b) Steam distillation.	the binary mixture and
_	Course II	c) Thin layer chromatography. d) Column	familiarize the systematic
		chromatography. 2. Qualitative analysis:	procedure of organic
		a) Separation, Purification, sample submission	mixture analysis and the
		and identification of compounds of	preparation involving
		binarymixture (one solid and one liquid) by	nitration, bromination,
		chemical method (Any six). b) Separation,	Sandmeyer reaction, and
		Purification, sample submission and	Aldol condensation
		identification of compounds of binary mixture	
		(solids) physical method (Any three).	
		3. Preparations (Double stage), (Any Four):	
		a) Phthalic anhydride-phthalimide-Anthranilic	
		acid. b) Acetophenone-oxime-Acetanilide.	
		c) Phthalic anhydride-o-benzoyl benzoic acid-	
		Anthraquinone. d) Chlorobenzene-2,4-	
		dinitrochlorobenzene-2,4-dinitrophenol.	
		e) Benzoin-benzil-benzilic acid. f) Acetanilide-	
		p-Bromo-acetanilide-p-bromo aniline.	
		4. Use of Computer (Chem Draw, Chem Sketch	,
		ISI Draw): Draw the structure of aliphatic,	
		aromatic and heterocyclic compounds and	
		corrected IUPAC name.	

Specify Course Outcome: Learn the pilot separation of the binary mixture, familiarize the systematic procedure of organic mixture analysis, the preparation involving nitration, bromination, Sandmeyer reaction, and Aldol Condensation, learn the test involving identification of special elements and learn the confirmatory test for various functional groups and understand the technique involving drying and crystallization by various methods.

Specify Program Outcome: Expertise the various techniques of preparation and analysis of organic substances and learn the estimation of various organic compounds and understand micro scale technique.

Signature of Teachers: Dr. H. M. Kasralikar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. S. B. Patwari

Department: Chemistry

Program: M.Sc. FY Semester -II CBCS

Subject: Chemistry

Course Code: CH–413 Paper Title: Laboratory Course III (Physical Chemistry) Paper –XIII

Unit	Unit Name	Topics	Unit-wise
No.			Outcome
Unit-	Laboratory	SECTION - A	. Apply their
1	Course III	INSTRUMENTATION:	knowledge for
	(Physical	1. CONDUCTOMETER:	setting various
	Chemistry)	1. To estimate the concentrations of sulphuric acid,	experiments based
	Chemistry)	acetic acid and copper sulphate in	on the
		given solution. 2. To determine solubility product	instrumentations
		and thermodynamic properties (ΔG , ΔH , ΔS) of	studied
		sparingly soluble salts.3. To determine the relative	
		strength of chloroacetic acid and acetic acid.	
		4. To determine the hydrolysis constant of Aniline	
		hydrochloride.5. To investigate basic hydrolysis of	
		ethyl acetate at four different temperatures and	
		tofind out the energy of activation.	
		2. POTENTIOMETER:	
		1. To determine PK1 PK2 values of Phosphoric	
		acid.2. To determine strength of strong acid and	
		weak acid in given mixture. 3. To determine the	
		oxidation state of metal ion by method of	
		concentration cell without transparence.	
		3. pH-METER:	
		1. To determine Hammet constant of given	
		substituted benzoic acid.	
		2. To determine pH values of various mixtures of	
		sodium acetate and acetic acid in aqueous solution	
		and hence to find out dissociation constant of acid.	
		4. COLORIMETER	
		1. To determine equilibrium quotient for formation	
		of mono thiocyanate iron(III) complex.	
		2. To determine Indicator constant of an indicator.	
		3. To determine concentration of Cu(II) iron in	
		given solution titrating with E.D.T.A.solution.	
		5. REFRACTOMETER:	
		1. To determine the molar refractivity of methyl	
		acetate, ethyl acetate, n-hexane and carbon tetra	
		chloride and to calculate refractive equivalence of	
		C, H and Cl atom. 2. To study the variation of	
		refractive index with composition of mixture of	

CCl4 and ethyl acetate.
6. POLARIMETER.
1. To determine the relative strength of two acids.
2. To determine the percentage of two optically
active substance (d-glucose and dtartaric acid) in
the mixture.
SECTION B
NON-INSTRUMENTATION
1. To determine partial molar volume of ethanol
and water mixture at given Composition.
2. To determine molecular weight of high polymer
by viscosity measurement. 3. To study the effect of
surfactant on surface tension of water by using
stalagmometer.
4. To determine solubility of benzoic acid at
different temperature and hence to determine it's
heat of solution.
5. To investigate the autocatalytic reaction between
KMnO4 and oxalic acid and to find energy of
activation.
6. To determine the rate constant of hydrolysis of
methyl acetate catalyzed by HCl.
7. To determine effect of ionic strength on rate
constant of reaction between potassium per sulphate
and potassium iodide.
8. To investigate the solubility of three component
system and hence tie line on bimodal curve.
9. To study the variation of viscosity with
composition of mixture of i) ethanol-water ii)
methanol-ethylidene chloride iii) nitric acid-
Chloroform and determine whether or not there is
compound formation between two liquids.
10. To determine surface tension of methyl acetate,
ethyl acetate and chloroform and hence to calculate
atomic parachors of C, H, Cl.
11. To determine order of reaction of given reaction
kinetics by fractional change method.
12. To study distribution of benzoic acid between
benzene and water at room temperature and hence
show that benzoic acid dimerises in benzene.
הוסיא נוומנ טכוובטוכ מכום מוווטרוזכיז ווו טכוובכווכ.

Specify Course Outcome: Perform different qualitative and quantitative analysis

Specify Program Outcome: Apply their knowledge for setting various experiments based on the instrumentations studied

Signature of Teachers: Dr. S. B. Patwari

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr N.S. Kaminwar

Department: Chemistry

Program: M. Sc. FY Semester-II Subject: Laboratory Course – IV (Analytical Chemistry)

Course Code: LCH-414

Paper Title: P-XIV

Unit Number	Unit Name	Topics	Unit-wise Outcome
I		(Instrumental) A. Conductometry 1. Determination of the strength of strong acid and weak acid from mixture solution conductometrically 2. Analysis of aspirin by conductometric method. B. Potentiometry	Understand the basic principles and theory of different instruments used during the conduction of the experiments

3. Determine the percentage of two optically active	
substances in a mixture	
polarimetrically.	
F. Flame photometry	
1. Estimation of Na+ / K+ by Flame photometry.	
Section-B	
(Non-Instrumental)	
A. Statistical analysis	
1. Application of 't' test for experimental data.	
2. Application of rejection criteria (Q test) for	
experimental data.	
3. Treatment of analytical data with least square	
method applied to Beer's law for	
KMn04 solutions.	
B. Chromatography	
1. Separation of cations and anions by paper	
chromatography and determination of Rf	
values.	
2. Determination of Ion-exchange capacity of an	
cation exchanger.	
3. Determination of Ion-exchange capacity of an	
anion exchanger.	
C. Chemical Kinetics	
1. Investigate the reaction between bromic acid and	
hydroiodic acid.	
2. To study the kinetics of iodination of acetone.	
D. Heterogeneous equilibria:	
1. Determine the formula of complex form between	
Cupric ion and ammonia by	
distribution method.	
2. Investigate the solubility of three component	
system and hence draw a tie lone on	
bimodal curve.	
3. Determination of hardness of water by	
complexometric titration.	

Specify Course Outcome: Understand the basic principles and theory of different instruments used during the conduction of the experiments and apply their knowledge for setting various experiments based on the instrumentations studied and perform different qualitative and quantitative analysis.

Specify Program Outcome: Perform the different experiments on conductometer, pH meter, potentiometer, colorimeter, polarimeter, flame photometry

Signature of Teachers

Dr N. S. Kaminwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad- 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Program: M.Sc. SY Semester -III CBCS

Subject: Chemistry

Course Code: OCH 511 Paper Title: Advanced Spectroscopic Methods Paper – XV

Unit No.	Unit Name	Topics	Unit-wise Outcome
I	UV-Visible Spectroscopy	Fieser-Woodward rules for conjugated dienes and carbonyl compounds, Fieser-Kuhn rules for polyenes. UV spectra of aromatic compounds and heteroaromatic compounds. Calculation of max for the benzene derivatives (R-C6H4-Co-G) by A. I. Scott empirical rules.	Students are familiar with UV and Visible spectroscopy by determining absorption maxima of various dienes, enones and organic compound.
П	IR spectroscopy	Recapitulation, Characteristic vibration frequencies of Alkanes, Alkenes, Alkynes, Aromatic compounds, Alcohols, Ethers, Phenols and Amines. detailed study of vibrational frequencies of carbonyl compounds Ketones, Aldehydes, Esters, Amides, Acids, Anhydride, Lactose, Lactams and Conjugated Carbonyl compounds. Factors affecting group frequencies: overtones, combination bands and Fermi-resonance. FITR and sampling techniques.	Student develops the detail knowledge to get the different peaks of functional groups in organic molecules by infra-red spectroscopy

III	¹ H - NMR	General introduction and definitions, Chemical	Students
	Spectroscopy	shift, Spin-spin interaction, shielding mechanism of measurement of chemical shift values and correlation for protons bonded to carbon (aliphatic, olefinic, aldehyde and aromatic) and other nuclei (alcohols, phenols, enols, carboxylic acids, amines, amides and mercapto). Factors affecting chemical shift. Deuterium exchange. Spin-spin coupling, factors affecting coupling constant. Complex spin-spin interaction between two and three nuclei. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, solvent effects. Fourier transform technique. Nuclear Over-Hauser effect (NOE). Resonance of other nuclei; ¹⁹ F and ³¹ P.	understand the importance and applications of NMR Spectroscopy for determination of structure of unknown organic compounds
IV	¹³ C NMR	Resolution and multiplicity of ¹³ C NMR, ¹ H- decoupling, noisedecoupling, broad band decoupling; Deuterium, fluorine and phosphoruscoupling; NOE signal enhancement, off-resonance, proton decoupling, Structural applications of CMR	Students are recognizable with CMR to authenticate the position of carbon atom in organic compound.
V	Mass Spectroscopy	Theory, instrumentation and modifications; Unit mass and molecular ions; Important terms- singly and doubly charged ions, metastable peak, base peak, isotropic mass peaks, relative intensity, FTMS, etc.; Recognition of M^+ ion peak; General fragmentation rules: Fragmentation of various classes of organic molecules, including compounds containing oxygen, sulfur, nitrogen and halogens; α , β -, allylic and benzylic cleavage; McLafferty rearrangement	Students are recognizable with CMR to authenticate the position of carbon atom in organic molecules
VI	Structural Problems:	 a) Combined problems on UV, IR, NMR and Mass spectral data for structure determination. b) Elucidation of structure of organic molecules using spectra (IR, PMR&CMR). 	Know the complete structure of compounds using UV, IR, PMR, CMR and Mass spectroscopic methods

- **Specify Program Outcome:** Know the complete structure of compounds using UV, IR, PMR, CMR and Mass spectroscopic methods.
- **Specify Program Outcome:** Students are acquainted with various spectroscopic techniques to elucidate the known andunknown organic molecules

Signature of Teachers: Mr. S. L. Nakkalwar

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

2022-23

Name of Teacher: Dr. H. M. Kasralikar & Dr. N.S. Kaminwar Department: Chemistry

Program: M. Sc. SY Semester III

Subject: Organic Chemistry

Course Code: OCH-512

Paper Title: Natural Products P-XVI

Unit No.	Unit Name	Topics	Unit-wise Outcome
I	Vitamins	Classification, Occurrence Chemistry of Vitamins A, Vitamin C and Vitamin-E Structure elucidation and synthesis. Deficiency syndromes etc.	natural products and
Π	Terpenoids and Carotenoids	Classification, nomenclature, Occurrence, isolation, isoprene rule, structure determination, stereochemistry and biogenesis of the following molecules Citral, Camphor, Menthol, Farnesol, Zingiberene, Abietic acid. Biosynthesis of terpenoids	To study the different natural products, and their Nomenclature, occurrence, deficiency syndromes
III	Alkaloids	Structure, stereochemistry and synthesis of quinine and morphine.	To study the Biogenesis of Natural Products.

IV	Steroids	Occurrence, Nomenclature, Basic Skeleton, Diel's hydrocarbon and Stereochemistry. Structure determination and synthesis of Cholesterol, Bile acid, Androsterone, Testosterone, Oestrone, Aldosterone and Progesterone	elucidation and synthesis of Vitamins, Terpenoids and Steroids.
V	Plant pigments	Occurrence, nomenclature and general method of structure, determination of Anthocyanidins. Synthesis of Cyanidin Chloride, Chalcones, Flavones, Quercetin. Peral methods of structure determination of Anthocyanidins. Synthesis of Cyanidin Chloride, Chalcones, Flavones, Quercetin.	To study the Biogenesis of Natural Products.
VI	Prostaglandins, pyrethoids, Rotenones and pheromones	Occurrence, classification. Biogenesis, physiological effects and synthesis of PGE and PGF2z. Natural and synthetic of pyrethroids, Rotenone's and pheromones. Synthesis of Bombykol	physiological effects of

Specify Course Outcome: Familiarize the students with Classification, Occurrence Chemistry of Vitamins A, Vitamin C and Vitamin E Structure elucidation and synthesis. Deficiency syndromes etc., Classification, nomenclature, Occurrence, isolation, isoprene rule, structure determination, stereochemistry and biogenesis of the following molecules Citral, Camphor, Menthol, Farnesol, Zingiberene, Abietic acid. Biosynthesis of terpenoids, Structure, stereochemistry and synthesis of quinine and morphine, Occurrence, Nomenclature, Basic Skeleton, Diel's hydrocarbon and Stereochemistry. Structure determination and synthesis of Cholesterol, Bile acid, Androsterone, Testosterone, Oestrone, Aldosterone and Progesterone, Occurrence, nomenclature and general method of structure, determination of Anthocyanidins. Synthesis of Cyanidin Chloride, Chalcones, Flavones, Quercetin., Occurrence, classification. Biogenesis, physiological effects and synthesis of PGE and PGF2z. Natural and synthetic of pyrethroids, Rotenones and pheromones. Synthesis of Bombykol.

Specify Program Outcome: To study the different natural products, and their Nomenclature, occurrence, deficiency syndromes, to study the Biogenesis of Natural Products, to study the physiological effects of prostaglandins, pyretheroids

Signature of Teachers: Dr. H.M. Kasralikar & Dr. N.S. Kaminwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. H.M. Kasralikar

Department: Chemistry

Program: MSc SY Semester –III CBCS

Subject: Organic Chemistry

Course Code: OCC–513 Paper Title: Organic Synthesis Paper – XVII

Unit No.	Unit Name	Topics	Unit-wise Outcome
Unit- 1	Oxidation	 a) Oxidation of alcohol to aldehyde, ketone or acid: Jones reagent, Swern oxidation, Collins reagent, Fetizones reagent, PCC, PDC, PFC, IBX,Activated MnO2, Chromyl chloride (Etard reaction), TEMPO, CAN, NMO, Moffattoxidation, Baeyer-Villiager, Woodward and Prevostdihydroxylation, b) Oxidative cleavage of Carbon-Carbon double bonds: KMnO4, Ozonolysis. c) Oxidations using SeO2, PhSeBr. Selective cleavages at functional groups: Cleavage of glycols, IO⁻Pb(OAc). 	To learn the mechanism of condensation, oxidation.
Π	Reductions		To learn the mechanism of condensation, reduction.
III	Organic Reagents	DCC, EDC, DDQ, 1,3 Dithiane, LDA, DMDO, OsO ₄ , RuO ₄ , SmI ₂ , Dess-Martin Periodinane, Diazomethane, Lawesson's reagent	Synthetic application of reagent
IV	(i) Ylides(ii) Enamines	Ylides: Preparation and their synthetic applications along with their stereochemical aspects of Phosphorous, Sulphur and Nitrogenylides. Enamines: Generation & application in organic synthesis with mechanistic pathways, stork enamine reaction.	To learn the Synthesis and applications of ylides.
V	Rearrangement	Pummerer, Payne, Eschenmoser fragmentation, Brook, Wagner-Meerwein, Wolf, Semipinacol, Epoxide rearrangement with lewis acid, Dienone-Phenol rearrangement, Tiffeneau-Demjanov, Favorskii, von Richter, Wittig, Neber, Smiles, Fries, Curtius, Lossen, Schmidt, Steven, Hofmann, Iodolactonisation.	To know the conversion of different substrate molecules through the rearrangement and develop the basic knowledge

	New Decis		to write the mechanisms.
V	Name Reactions	Hoffmann–Loffler–Freytag, Dieckmann cyclization, Chichibabin, Vilsmeier, Ene, Ullmann reaction, Mannich, Strecker amino acid synthesis.	To understand the principles of different name reaction and transformations

Specify Course Outcome: To learn the mechanism of condensation, oxidation, Reduction, and synthetic application of reagent and name reactions.

Specify Program Outcome: Familiarize the students with the molecular rearrangement mechanism of condensation, oxidation, reduction and application of reagent.

Signature of Teachers: Dr. H. M. Kasralikar

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. N.S. Kaminwar

Department: Chemistry

Program: M. Sc. SY Semester-III

Subject: Organic Chemistry

Course Code: OCC-514

Paper Title: Medicinal Chemistry P-XVIII

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Concepts of Medicinal Chemistry, Classificati on of Drugs:	 A) Concepts of Medicinal Chemistry: Important terminologies in Medicinal Chemistry: Drugs, Pharmacy, Pharmaceutics, Toxicology; Pharmacodynamic agents, Pharmacophore, Pharmacodynamics, metabolites and antimetabolites, Chemotherapy. Mechanism of chemotherapeutic actions: 1) Biological defences 2) Chemical defences. a) Surface active agent, b) Metabolic antagonism. Assay of Drugs: Chemical assay, Biological assay B) Classification of Drugs: i) Classification of drugs on the basis of therapeutic action. a) Chemotherapeutic agents, b) Pharamacodynamic agents. 	• Learn basic principles involved in drug discovery and designing process
Ι	Drug Design	 iii) Differentiate medicine and drugs A] Drug Discovery. i) Introduction ii) Procedure followed in drug design. a) Drug discovery without a lead, b) Lead discovery, rational approaches to lead discovery iii) Lead modification: Drug design and development, a) Identification of the active part: The pharmacophore, b) Functional group modification, c) Structure-activity relationship, Qualitative versus quantitative approaches-advantages and disadvantages d) Structure modification to increase potency and the therapeutic index; 1) Homologation, 2) Chain branching, 3) Ring-chain transformation., 4) Bioisosterism, 	• To know the role of medicinal chemist in development of medicinal agents

 5) Combinatorial chemistry. iv) Structural modification to increase oral bioactivity. 1) Electronic effect. 2) The Hammet equation. 3) Lipophilicity effect. B) Concept of prodrugs and soft drugs a) Prodrugs: i) Prodrugs designing, types of prodrugs: ii) Prodrug formation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A) Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Pree-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A) Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming ii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D) Design of function, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibiton of enzyme iv) Suicide	 	
 1) Electronic effect, 2) The Hammet equation, 3) Lipophilicity effect. B] Concept of prodrugs and soft drugs a) Prodrugs: i) Prodrugs designing, types of prodrugs, ii) Prodrug formation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design, ii) Deactivation of certain drug, ii) Determination of the structure of the protein, iv) Design of hubitors C] Molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling e) X-ray crystallography. D] Design of Enzyme inhibitors ii) Detervine indibitors ii) Design of notibitive inhibitors iii) Active-site directed irreversible inhibition. Theories of enzyme 	5) Combinatorial chemistry.	
 1) Electronic effect, 2) The Hammet equation, 3) Lipophilicity effect. B] Concept of prodrugs and soft drugs a) Prodrugs: i) Prodrugs designing, types of prodrugs, ii) Prodrug formation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design, ii) Deactivation of certain drug, ii) Determination of the structure of the protein, iv) Design of hubitors C] Molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling e) X-ray crystallography. D] Design of Enzyme inhibitors ii) Detervine indibitors ii) Design of notibitive inhibitors iii) Active-site directed irreversible inhibition. Theories of enzyme 		
 Lipophilicity effect. B) Concept of prodrugs and soft drugs a) Prodrugs: i) Prodrugs designing: types of prodrugs, ii) Prodrug tormation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs: A) Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50. Therapeutic index A) QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding. Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A) Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and Dock softwares, with successful examples. B) Structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Dutes of molecular modelling: a) Manual use, b) Further-computer programming ii) Artificial Intelligence Methods in molecular modelling e) Arty crystallography. D) Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Theories of enzyme 	-	
 B] Concept of prodrugs and soft drugs a) Prodrugs: i) Prodrug designing, types of prodrugs, ii) Prodrug formation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling iii) Active-site directed ireversible inhibitors i) Introduction, ii) Computitive inhibitors, iii) Active-site directed ireversible inhibitors ii) Dosign of Enzyme inhibitors ii) Natificial nuelligence Methods in molecular modelling ii) Suicide enzyme inactivation. Drug action through enzyme innetivation. Drug action 		
 a) Prodrugs: i) Prodrugs designing, types of prodrugs, ii) Prodrug formation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding. Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, ii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling e) X-ray crystallography. D Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibitors i) Discing of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Theories of enzyme 		
 prodrugs, ii) Prodrug formation of compounds containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophillicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking; Rigid docking, flexible docking, manual docking; Advantages and Javakavantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Structure based drug design. ii) Determination of the structure of the protein, iv) Design of inhibitors c) Molecular modelling using computers i) Introduction ii) Structure based drug design, iii) Active-site directed irreversible inhibitors i) Introduction ii) Aray crystallography. D Design of Enzyme inhibitors ii) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Drug action through enzyme inactivation. Drug action 		
 containing various chemical groups, Prodrugs and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design. j) Process of structure based drug design, ii) Deactivation of certain drug, ii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction iii Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibitors. Orag action through enzyme inhibitors. 		
and drug delivery system b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. ii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction iii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibitor. Theories of enzyme		
 b) Soft drugs: i) Soft drug concept ii) Properties of soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties. Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking; Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, ii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzyme, iv) Suicide enzyme inactivation. Drug action through enzyme inactivation. Drug action 		
soft drugs. A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling i) Artigical drug in the libitors i) Introduction ii) Introduction, ii) Competitive inhibitors, ii) Introduction, ii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inhibition. Theories of enzyme		
 A] Theories of drug activity Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of parition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of molecular modelling using computers i) Introduction ii) Artificial Intelligence Methods in molecular modelling: c) X-ray crystallography. D Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Theories of enzyme 		
Drug-receptor interactions, receptor theories and drug action, i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling <		
 action, i) Occupancy theory, ii) Rate theory, iii) Induced theory: LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages and disadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Theories of enzyme 		
 i) Occupancy theory, ii) Rate theory, iii) Induced theory; LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design ofinhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibiton. Theories of enzyme 		
 LD-50 and ED-50, Therapeutic index A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of mibitors C] Molecular modelling using computers i) Introduction iii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Drug action through enzyme inhibition. Theories of enzyme 		
 A] QSAR method: Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inhibiton. Theories of enzyme 		
Introduction, Methods used in QSAR studies, Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibitor of enzymes, iv) Suicide enzyme inaction. Theories of enzyme		
 Hansch method, Free-Wilson method (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzyme, iv) Suicide enzyme inhibition. Theories of enzyme 		
 (Mathematical derivations of equations excluded), Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inhibition. Theories of enzyme 		
Advantages and disadvantages of free approach, Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme innactivation. Drug action through enzyme inhibition. Theories of enzyme	, , , , , , , , , , , , , , , , , , , ,	
 Computer based methods of QSAR related to receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A) Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Drug action through enzyme inhibition. Theories of enzyme 	-	
 receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibitor. Theories of enzyme, iv) Suicide enzyme inhibiton. Theories of enzyme 		
 receptor binding, Physico-Chemical properties, Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibitor. Theories of enzyme, iv) Suicide enzyme inhibiton. Theories of enzyme 		
Lipophilicity, Electronic parameters, Steric substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibiton. Theories of enzyme, iv) Suicide enzyme inhibiton. Theories of enzyme		
 substituent constants, Experimental determination of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Drug action through enzyme inhibition. Theories of enzyme 		
of partition coefficients. A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design ofinhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition.Theories of enzyme		
A] Molecular docking: Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Drug action through enzyme inhibition. Theories of enzyme	-	
Rigid docking, flexible docking, manual docking; Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme	-	
Advantages anddisadvantages of flex-X, flex-S, Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition.Theories of enzyme	- 0	
Autodock and Dock softwares, with successful examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme		
 examples. B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition. Drug action through enzyme inhibition. Theories of enzyme 		
B] Structure based drug design. i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme	,	
 i) Process of structure based drug design, ii) Deactivation of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 	-	
 of certain drug, iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
 iii) Determination of the structure of the protein, iv) Design of inhibitors C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
 Design of inhibitors C] Molecular modelling using computers Introduction Introduction Uses of molecular modelling: a) Manual use, b) Further-computer programming Artificial Intelligence Methods in molecular modelling X-ray crystallography. D] Design of Enzyme inhibitors Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
 C] Molecular modelling using computers i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
 i) Introduction ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
 ii) Uses of molecular modelling: a) Manual use, b) Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
 Further-computer programming iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition.Theories of enzyme 		
 iii) Artificial Intelligence Methods in molecular modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
modelling c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition.Theories of enzyme	1 1 0 0	
 c) X-ray crystallography. D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 	iii) Artificial Intelligence Methods in molecular	
D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition.Theories of enzyme	modelling	
D] Design of Enzyme inhibitors i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition.Theories of enzyme	c) X-ray crystallography.	
 i) Introduction, ii) Competitive inhibitors, iii) Active-site directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme 		
directed irreversible inhibition of enzymes, iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme		
iv) Suicide enzyme inactivation. Drug action through enzyme inhibition. Theories of enzyme		
through enzyme inhibition. Theories of enzyme		
drugs and prodrugs.		
	• • •	
I] Nucleic acids: Nucleic acids (NA) as targets for drug action NA interactive agents. Classes of drugs		
drug action, NA-interactive agents, Classes of drugs		
that interact with nucleic acids, Intercalation, NA-		
alkylation, NA-strand breaking and their	aikyiation, INA-strand breaking and their	

		 importance in drug action. J] New developments Gene therapy and drug resistance K] Informatics methods in drug design: Brief introduction to bioinformatics, cheminformatics, their relation to drug design as per the topics discussed above. 	
III	: Pharmacoki netics and Pharmacody namics	 A] Pharmacokinetics: a) Drug absorption, b) Distribution, c) Elimination d) Disposition; Chemistry of ADME and toxicity properties of drugs.Uses of pharmacokinetics in drug development process. B] Pharmacodynamics a) Introduction, Elementary treatment of enzyme inhibition, b) Membrane active drug, c) Sulphonamides 	• Learn insight knowledge to analyze and perform SAR and QSAR
IV	Drug metabolism	I] Introduction, II] Oxidation, III] Reduction, IV] Hydrolysis, V] Conjugation, Significance of drug metabolism in Medicinal Chemistry	• Learn insight knowledge to analyze and perform SAR and QSAR
V	Antimicobacte ial drugs	 A] drugs: Introduction. Mechanism of action of anti-tuberculosis drugs, Targets for anti-tuberculosis drug development, Mechanism of drug-resistance in tuberculosis a)First-line agents (Primary tubercular drugs): Structure and activity of streptomycin and dihydrostreptomycin, Synthesis and SAR of 4-amino salicylic acid and isoniazid b)Second line agents (Secondary antitubercular agents): Structure and activity of Rifampicin, Cycloserine, Viomycin, Enthionamide, Ethambutol, Thioacetazone. (Synthesis of Cycloserine and Ethambutol expected) B)Antileprotic drugs Chaulmoogra and hydnocarpus oil, Multidrug therapy, SAR of sulphones, Dapsone (DDS), Acedapsone, Solapsone, Diaminodipheylthiourea, Rifampicin. (Synthesis of Acedapsone expected) 	Learn insight knowledge to analyze and perform SAR and QSAR
VI	Antibiotics	1.Introduction, classification of antibiotics, 2. Cell wall synthesis, 3. Mechanism of action of antibiotics, a) Inhibition of cell-wall synthesis, b) Inhibition of bacterial protein synthesis, c) Disorganization of the cytoplasmic membrane, d) Interference in the bacterial nucleic acid synthesis,e) Inhibition of the tetrahydro-folate biosynthesis I)Cell wall synthesis inhibitors (β - Lactam antibiotics): Synthesis of Penicillin-V, Penicillin-G, amoxicillin, ampicilin from 6-APA, cephalexin, Structure and activity of benzyl penicillin, semi- synthetic penicillin, cephalosporin, Mode of action of penicillin and	Learn how to analyze and perform SAR of Antimicobacte rial,drug,Antib iotics,Coagula nts

cephalosporin.Protein synthesis inhibitors: Structure activity of tetracycline and synthesis of chlortetracycline, Synthesis and SAR of chloramphenicol, Mode of action of chloroamphenicol.	
nts and Mechanism of blood clotting, Coagulant, Vitamin- gulants K, Vitamin-K analogues, anticoagulant, Action of anticoagulant, Heparin, Coumarin derivatives, Synthesis of 4-hydroxy coumarin, Dicoumarol, Structure and activity coumarin derivatives	Learn how to analyze and perform SAR of Antimicobacte -rial,drug,Ant- ibiotics,Coag- ulants

Specify Course Outcome: To impart knowledge of Important terminologies in Medicinal Chemistry, Classification of Drugs, Drug Discovery, Concept of prodrugs and soft drugs, Theories of drug activity, QSAR method, Molecular docking, Molecular modelling using computers, Design of Enzyme inhibitors, Pharmacokinetics and Pharmacodynamics, Drug metabolism, Antimicrobacterial drugs, Antibiotics, Coagulants and Anticoagulants

Specify Program Outcome: Learn basic principles involved in drug discovery and designing process, learn insight knowledge to analyze and perform SAR and QSAR, how to analyze and perform SAR of Antimicobacterial drug, Antibiotics, Coagulants.

Signature of Teachers: Dr. N. S. Kaminwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Program: M.Sc. SY Semester –IV CBCS

Subject: Chemistry- IV Sem.

Course Code: OCH- 521 Paper Title: Advanced Heterocyclic Chemist
--

Unit No.	Unit Name	Topics	Unit-wise Outcome
Unit- 1	Nomenclature of heterocycles:	Systematic nomenclature system (Hantzsch- Widman system) Trivial nomenclature system. Fusion nomenclature system and Replacement nomenclature system	different systems for nomenclature will be presented
Π	Nonaromatic heterocycles	Synthesis, reactivity, and importance of the following ring systems.Azirines, Oxaranes, Thiiranes, Diazirenes, Diaziridines andAzetidines.	Emphasis is given on the most important heterocyclic systems, such asAziridines, Oxaranes,Thii ranes,Diaziridi nes,Diazirenes and Azetidines
III	Five and six- membered heterocycles with two hetero atoms:	Synthesis, reactivity, aromatic character and importance of the followingheterocycles: Pyrazole, Imidazole, Oxazole, Thiazole, Pyrimidine and Pyrazine	Emphasis is given on the most important heterocyclic systems, such as Pyrazole, Imidazole, Oxazole, Thiazole, Pyrimidine andPyrazine

IV	Heterocycles with more than two hetero atoms	Synthesis, reactivity, aromatic character and importance of the following heterocycles: Triazoles, Oxadiazoles, Thiadiazoles and Triazines	For each group, ring synthesis, chemical properties and characteristic reactions will be discussed
V	Larger ring and other heterocycles:	Synthesis and reactivity of Azepines, Oxepines and Thiepines. Synthesis of Benzoazepines, Benzooxepines, Benzothiepines, Azocines and Azonines	For each group, ring synthesis, chemical properties and characteristic reactions will be discussed
VI	Banzanellated azoles and heterocycles with ring- junction nitrogen:	Banzanellated azoles: Synthesis and chemical properties of Benzimidazoles, Benzoxazoles and Benzothiazoles.Heterocycles with Ring-Junction nitrogen: Synthesis and reactivity ofQuinolizines andIndolizines	. Aromaticity applied to heterocyclic compounds, general methods for ring synthesis (by a number of cyclisation and cycloadditon reactions)

Specify Course Outcome: The student will get familiar with particular properties and reactions for the most important heterocycles as well as different systems of nomenclature.

Specify Program Outcome: This course aims at giving a fundamental theoretical understanding of heterocyclic chemistry, including alternative general methods for ring synthesis and application of such methods for the preparation of specific groups of heterocyclic systems. The student will get familiar with particular properties and reactions for the most important heterocycles as well as different systems of nomenclature.

Signature of Teachers: Mr. S. L. Nakkalwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Program: M.Sc. SY Semester –IV CBCS

Subject: Chemistry

Course Coue . Och- 322 I aper Thie. Auvalieu Organie Chemisu y I -AA	Course Code: OCH- 522	Paper Title: Advanced Organic Chemistry P-XXI
--	-----------------------	---

	Unit Name	Topics	Unit-wise
Unit			Outcome
No.			
Unit-	Enzyme	Introduction, Nomenclature, Classification and	To study the
1	Chemistry	Extraction of enzymes, Introduction to catalysis and	applications
		enzymes; Multifunctional catalysis, Intramolecular	and
		Catalysis, Mechanism of enzyme action, Factors	Mechanism of
		responsible for enzyme specificity, Enzyme activity	Enzymes
		and kinetics (Michaelis Menten and Lineweaver-Burk	
		plots), Enzyme Inhibitions (Reversible and	
		irreversible), Structure, Mechanism of action and	
		applications of α -Chymotrypsin, Ribonuclease,	
		lysozyme and Carbopeptidase-A. Enzymes in	
		synthetic organic chemistry [Additions, eliminations,	
		substitutions, condensations,	
		cyclocondensations, oxidations, reductions and	
		rearrangement one example each to be covered]	
II	Mechanism	Transition-state theory, orientation and steric effect,	To study the
	of enzyme	acid-base catalysis, covalent catalysis, strain or	applications
	action and	distortion.Example of some typical enzyme	and
	co-enzyme	mechanisms for chymotrypsin, ribonuclease,	Mechanism of
	chemistry	lysozyme and carboxypeptidase A.	Enzymes
		Chemical structures of co-enzymes and cofactors,	
		Oxidoreduction (NAD+, NADP+), Pyridoxal	
		phosphate (PLP), Thiamine pyrophosphate (TPP),	
		Biotin (CO2 carrier).	
III	Asymmetric	Chiral pool, Chiral auxiliary, Enantio-	To study
	Synthesis	&Diastereoselective synthesis, Chiral reagent and	Asymmetric
		chiral catalyst including CBS reagent, NADH,	synthesis
		Asymmetric hydrogenation including BINAP,	
		Hydroboration- Ipc2BH, IpcBH2, Asymmetric	
		epoxidation- (+) DET & (-) DET, Sharpless,	
		Jacobson, Asymmetric dihydroxylation-	
		(DHQD)2PHAL & (DHQ)2PHAL, Felkin-Anh	
		model, Zimmermann-Traxler transition state model,	
		Proline catalyzed asymmetric reactions.	

IV	Formation of Carbon- Carbon bonds via organometall ic reagents	Synthesis and applications of organo, Magnesium, Titanium, Cerium, Boron, Silicon, Cadmium .Introduction, generation, stability, reactivity, characteristics, structural and stereo chemical properties of free radicals	
V	Reaction of free radicals	Addition, substitutions, fragmentations, Oxidations and reductions, Detection of free radicals, Homolysis and free radical displacement. Radical chain reactions, Addition and rearrangements, radical cyclization, reactivity of aliphatic and aromatic substrates at bridgehead, Coupling of alkynes and arylation of aromatic compound by diazonium salt, Sandmeyer reaction, Hunsdieker reaction, McMurry reaction, Acyloin condensation, Bouveault-Blank reduction	To study Free radical reaction

Specify Course Outcome: Applications and uses of Green catalysts and Reagents. and use of Ionic Liquids and PTC in Green Synthesis.

Specify Program Outcome: The basic Principles of Green Chemistry,

Signature of Teachers: Mr. S. L. Nakkalwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. H. M. Kasralikar

Department: Chemistry

Program: M.Sc. SY Semester –IV CBCS

Subject: Chemistry

Course Code: OCH–523

Paper Title:	Organic synthesis:	Retro synthetic Approach	Paper – XXII

Unit No.	Unit Name	Topics	Unit-wise Outcome
Ι	Disconnection Approach	Introduction to:(i) Grounding of organic chemistry for understanding retrosynthesis; Retrosynthetic analysis and designing of the synthesis; Disconnection approach: An introduction to synthons, synthetic equivalents, disconnection approach, functional group interconversions, importance of order of events in organic synthesis, one and two group C-X disconnections, selective organic transformations: chemoselectivity, regioselectivity, stereoselectivity, enentioselectivity, Reversal of polarity, cyclization reactions, amine synthesis	specific knowledge as well as relevant understanding of the Retrosynthesis
II	Protecting group	Protection and deprotection of hydroxyl, carbonyls in aldehydes and ketones, amines, carboxylic acids, alkenes and alkynes	To study the protection and deprotection group approach
III	Protection and deprotection of hydroxyl, carbonyls in aldehydes and ketones, amines, carboxylic acids, alkenes and alkynes	 (i) One group C-C Disconnections: Alcohols (including stereoselectivity), carbonyls (including regioselectivity), Alkene synthesis, use of acetylenes and aliphatic nitro compounds in organic synthesis. (ii) Two group C-C Disconnections: Diels-Alder reactions, 1,3difunctionalized compounds and α, β-unsaturated compounds, control in carbonyl condensations, 1,5 difunctionalized compounds, Michael addition and Robinson annelation. 	The academic and professional skills required for Chemistry- based professions

IV	Ring Synthesis:	heterocycles, synthesis of 3, 4, 5 and 6 membered	To know the ring synthesis for cyclic molecules
V	molecules	for following molecules: Longifoline, Reserpine, Juvabione, Aphidicoline, Taxol.	To devlop synthetic routes based on retrosynthetic analysis for molecules.

Specify Course Outcome: To persuade the subject specific knowledge as well as relevant understanding of the Retrosynthesis, the academic and professional skills required for Chemistry-based professions. Learning experiences gained from this Disconnection approach is important for industrial purpose.

Specify Program Outcome: To persuade the subject specific knowledge as well as relevant understanding of the Retrosynthesis

Signature of Teachers: Dr. H.M. Kasralikar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. N. S. Kaminwar Program: M. Sc. SY Semester-IV **Department:** Chemistry **Subject**: Organic Chemistry

Course Code: OCC-524

Paper Title: Medicinal Chemistry P-XXIII

Unit No.	Unit Name	Topics	Unit-wise Outcome
I	Anti-cancer and Anti- AIDS agents	tumor, Terminology: Neoplasma, Sarcoma, Carcinoma, Blastoma, Cancers of blood, Metastases. Mechanism of tumor formation, Treatment of cancer: a) Surgery b) Photo	Learn basic principles involved in Anti-cancer and Anti-AIDS agents,Hypoglycemi c agents, Cardiac drugs, antiviral antimalarials.

II		Introduction, Types of diabetics, Insulin and its	To know the role of
**	(A)Insuli	preparation, Storage, secretion, and function of	medicinal chemist in
	n and	insulin, SAR and mechanism action of Sulphonyl	
	Hypogly		medicinal agents for
	cemic	and p-Phenyl urea	analgesic agents,
		A: Insulin and Hypoglycemic agents .	0 0 ,
	agents	(Dulcin), (Synthesis	Anti-inflammatory
	(B)Cardi		drugs, Anaesthetics,
	ac drugs:	Introduction, Types of diabetics, Insulin and its	depressants,
		preparation, Storage, secretion, and function of	Anticonvulsant
			agents,Drug acting
			on
		and p-Phenyl urea (Dulcin), (Synthesis of sodium	Gastrointestinal
		saccharin expected).	tact infections
		B] Cardiac drugs:	tact infections
		Introduction, Myocardial cell, Molecular basis of	
		mycocardial contraction, cardiovascular diseases,	
		pathophsiology heart failure.i) Cardiotonic	
		(Cardiac glycosides): Structure and activity of	
		glycosides, ii) Antianginal drugs. Types of angina	
		pectoris, Mechanism of action of antianginal	
		drugs. Classification of antianginal drugs, a)	
		Nitrates and nitrites, b) Non-nitrate. SAR of	
		Diperidamol,	
		Khellin, Xanthines and Papavarine, iii)	
		Antiarrhythmic drugs: Synthesis and SAR of	
		guanidine, procainamide, iv) β -Adrenergic	
		blocking agents: Synthesis and SAR of	
		propranolol and isoproterenol, v) Calcium	
		channel blockers: Structure activity of 1,4-	
		dihydropyridines, synthesis of Verapamil and	
		Diltiazem, vi) Antihypertensive drug: Primary	
		, , , J1 E J	
		Rauwolfia alkaloids, Synthesis and structure	
TTT		activity of methyldopa, Clonidine, Hydralazin.	TT., 1.,
III	: Antiviral	Antiviral agents, Antimalarials	Understand key
	agents,	,,	components of
	Antimalarial	antiviral agents, viral diseases, viral replication	Antiviral agents,
	S	and transformation of cells, SAR of amantadine	Antimalarials
		hydrochloride and interferons. Coronavirus:	
		Introduction, genome structure and life cycle,	
		COVID-19 drug development.	
		Antimalarials: Introduction, life cycle of	
		plasmodia, chemotherapy of malaria,	
		Mechanism of action of anti-malarial drugs,	
		Targets for anti-malarial drug development,	
		Mechanism of drug-resistance in malaria types	
		of antimalarial drugs. SAR of 8-aminoquinoline	
		derivatives, 4-aminoquinoline derivatives,	
		pyrimidine and biguanide derivatives. Synthesis	
		of pamaquine, primaquine, santoquine,	
		camaquine, and pyrimethamine and choroquine	

		phosphate (expected).	
IV	[A] Analgesic and Anti- inflammatory drugs [B]]Antifungal agents	 A] Analgesic and Anti-inflammatory drugs: i) Analgesics: SAR of piperidine, meperidin, methadone, and 6, 7-benzomorphans Synthesis of mepiridine, methadone and 6, 7-benzomorphans (expected) II) Anti-inflammatory drugs: -Introduction, classification on non-steroidal anti-inflammatory drugs, SAR of methyl salicylate, aspirin, iodomethazone, mefenamic acid, phenyl butazone, oxyphenbutazone, naproxen, rofecoxib, celecoxib, Synthesis of ibuprofen and phenylbutazone. III) Treatment of Gout: -Introduction, SAR and synthesis of Fluconazole. 	Understand key components of Analgesic and Anti- inflammatory drugsAntifungal agents
V	Drugs acting on CNS	 A) Anaesthetics: i) General anaesthetics: Synthesis of methohexital, structure activity of divinyl ether, nitrous oxide, Pentothal. ii) Local anaesthetics: Introduction, development of local anaesthetics, classification (according to chemical structure), a) Procaine and related amino benzoic acid, b) Stovain and its analogues, c) Lidocaine and its analogues, d) Synthesis and SAR of procaine, lidocaine and stovaine B) Depressants: Introduction i) Sedative and hypnotics, SAR of aldehydes, ketones and sulphones ii) Anticonvulsant: Introduction, Structure and activity of substituent barbiturates. Synthesis of Phenobarbital sodium (expected), Hydantoins: General synthesis and SAR of hydantoins. C) Antipsychotic agents (Neuroleptic agents): Selective modifier of CNS (Tranquillizers) Introduction, Classification, i) Phenothiazine derivatives: SAR and synthesis of chloropromazine and related compounds. ii) Butyrophenones derivatives: Synthesis of 	CNS

VIA)Intellectual property right (IPR): B)Agents for organ imagine OR Diagnostic agentsA) Intellectual property right (IPR): Manual of patent practices and procedure, Introduction, Patentable subject matter, Application for patents, Patent application under PCT, Publication and examination of application. B) Agents for organ imagine OR Diagnostic agentsUnderstand to file the patentsOR Diagnostic agentsB) Agents for organ imagine OR Diagnostic agents.Introduction, Classification, Radiopagues agents (contrast media), Water soluble and Water insoluble contrast media.Synthesis of Metrizamide, Iopanoic acid and Pyropylidone.Diognostic chemicals: i) Drugs used to test kidney functions, ii) Drugs used to test liver functions, iii) Agents used to test gastric function, iv) Agents used to test cardiac functionUnderstand the Drug acting on Gastrointestinal tract (Drug acting on GIT).VIIDrug acting on Gastrointestinal tract (Drug acting on GIT).Introduction, a) Gastric antacid: i) Treatment of gastric hyperacidity, ii) H2-receptor antagonists- Synthesis of Ranitidine (Zantac) and Famotidine. (Spasmolytic agents), d) Anthelmintic agents: Introduction, anthelmintic agents, synthesis of mebendazole.Understand the Drug acting on Gastrointestinal trac (Drug acting on Gastrointestinal trac (Drug acting on Gastrointestinal tract (Drug acting on GIT).			butyrophenones derivatives iii) Central nervous system stimulants (Antidepressants): Introduction Tricyclic system with central seven membered ring: Dibenzepine and related compounds, SAR of dibenzepine derivatives Synthesis of imipramine, amitriptyline, Chloropromazine and Diazepam.	
VIIDrug acting on Gastrointestinal tract (Drug acting on GIT).Introduction, a) Gastric antacid: i) Treatment of Synthesis of Ranitidine (Zantac) and Famotidine.Understand the Drug acting on Gastrointestinal tract (Drug acting on GIT).VIIDrug acting on Gastrointestinal tract (Drug acting on GIT).Introduction, a) Gastric antacid: i) Treatment of Synthesis of Ranitidine (Zantac) and Famotidine. (Drug acting on Gastrointestinal tract (Drug acting on GIT).Understand the Drug acting on Gastrointestinal trace (Spasmolytic agents), d) Anthelmintic agents: Introduction, anthelmintic agents, synthesis ofUnderstand the Drug acting on Gastrointestinal 	VI	property right (IPR): B)Agents for organ imagine OR Diagnostic	of patent practices and procedure, Introduction, Patentable subject matter, Application for patents, Patent application under PCT, Publication and examination of application. B) Agents for organ imagine OR Diagnostic	
Gastrointestinal tract (Drug acting on GIT).gastric hyperacidity, ii) H2-receptor antagonists- Synthesis of Ranitidine (Zantac) and Famotidine.Drug acting on Gastrointestinal trace (Drug acting on Gastrointestinal trace (Drug acting on GIT).b) Ulcerative colitis. c) Antispansmodics agents (Spasmolytic agents), d) Anthelmintic agents: Introduction, anthelmintic agents, synthesis ofDrug acting on Gastrointestinal trace (Drug acting on GIT)			Introduction, Classification, Radiopagues agents (contrast media), Water soluble and Water insoluble contrast media.Synthesis of Metrizamide, Iopanoic acid and Pyropylidone.Diognostic chemicals: i) Drugs used to test kidney functions, ii) Drugs used to test liver functions, iii) Agents used to test gastric	
	VII	Gastrointestinal tract (Drug	gastric hyperacidity, ii) H2-receptor antagonists- Synthesis of Ranitidine (Zantac) and Famotidine. b) Ulcerative colitis. c) Antispansmodics agents (Spasmolytic agents), d) Anthelmintic agents: Introduction, anthelmintic agents, synthesis of	Drug acting on Gastrointestinal tract (Drug acting on

Specify Course Outcome: Understand key components of drug discovery of Anti-cancer and Anti-AIDS agents, Hypoglycemic agents, Cardiac drugs, antiviral antimalarial agents

Specify Program Outcome: Understand key components of drug discovery of Anti-cancer and Anti-AIDS agents, Hypoglycemic agents, Cardiac drugs, antiviral antimalarial agents.

Signature of Teachers: Dr. N. S. Kaminwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr H. M. Kasralikar

Department: Chemistry

Program: M. Sc. SY CBCS **Course Code:** OCH-525 Subject: Chemistry Paper Title: Mixture Analysis Paper – XXV

Unit No.	Unit Name	Topics	Unit-wise Outcome
Ι	Qualitative Analysis(At least 10 Organic Mixtures):	Semi-micro–Qualitative Analysis of Ternary Mixtures (Solids; Two Solids and One Liquid, One Solid and Two Liquids) containing single/poly functional compounds by Chemical and Physical Method with Chromatographic Separation (TLC) for purity of all three components and its Expected Theoretical Spectral Data (IR, ¹ H NMR & ¹³ C NMR).	Learn basics practical knowledge of qualitative analysis

Specify Course Outcome: Creating awareness of chemistry practical's regarding analysis, synthesis and instrumental skills.

Specify Program Outcome: Building confidence of chemistry practical knowledge among the students and become skilled at organic compounds determination.

Signature of Teachers: Dr. H. M. Kasralikar.

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Mr. S. L. Nakkalwar

Department: Chemistry

Program: M.Sc. SY Semester-IV

Subject: Chemistry

rogram, wi.se. 51 Semester-1

Course Code: OCH-526 Paper Title: Synthesis of Organic Molecules P-XXVI

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Synthesis (At least three)	a) Benzophenone \rightarrow benzopinacol \rightarrow benzopinacolone b) Benzoin \rightarrow benzil \rightarrow benzilic acid c) Benzaldehyde \rightarrow chalcone \rightarrow chalcone epoxide,d)Acetanalide \rightarrow 4- bromoacetanalide \rightarrow 4- bromoaniline.e)Cyclohexanone \rightarrow cyclohexanoneoxime \rightarrow caprolactonef)Anthranilic acid \rightarrow o- chlorobenzoic acid \rightarrow N-phenyl anthranilic acid.	Learn basics practical knowledge of multistage synthesis of organic molecules
Π	Molecules (At least three)	a) Synthesis of anaesthetic drug Benzocaine.b) Synthesis of anticancer drug 6-methyluracil.c) Synthesis of antibacterial drug sulfanilamide.c) Synthesis of anti- epileptic drug antypyrine.d)Synthesis of anti-convulsant drug Phenytoin.	Learn fundamentals of organic synthesis in drug discovery

ш	Use of microwaves in organic synthesis (At least one)	a)The Hantzchdihydropyridine synthesis from aldehydes, ethyl acetoacetate and ureain microwave irradiation (<i>Synthetic</i> <i>Letters</i> , 8, 1296-1298, 2001; <i>Synthetic</i> <i>Communications</i> , 31, 425-430, 2001) b)Synthesis of coumarin by Knoevenagel synthesis using salicyladehyde, ethylacetatein presence of base in microwave irradiation (<i>J. Chem. Res. (S)</i> , 468-469,1998).c) Synthesis of dihydropyrimidones from Biginelli Reaction by acid-catalyzed, threecomponentreaction between an aldehyde, ß-ketoester and urea (<i>Tetrahedron</i> , 2005 , 61, 4275-4280)	. Learn about the one- pot organic synthesis by microwave techniques
---	---	--	---

Specify Course Outcome: Learn fundamentals of organic synthesis in drug discovery and Learn about the one-pot organic synthesis by microwave techniques

Specify Program Outcome: Learn basics practical knowledge of multistage synthesis of organic molecules.

Signature of Teachers: Mr. S. L. Nakkalwar

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr N. S. Kaminwar

Program: M.Sc. SY Semester-IV

Department: Chemistry

Subject: Chemistry

Course Code: LOCH-527 Paper Title: Physico-Organic Estimations Paper–XXVIII

Unit No.	Unit Name	Topics	Unit-wise Outcome
I	A] Estimation of Drugs by Titrimetric: (At least three)	 a) Assay of Aspirin. b) Assay of Ibuprofen. c) Assay of Analgin. d) Determination of Chloride in Ringer Lactate solution for Injection. e) Determination of Calcium ions in Calcium Gluconate Injection 	To trained the estimation of different organic molecules in day to day's life chemistry.
п	B] Isolation of natural products. (At least three)	a) Isolation of caffeine from tea leaves. b) Isolation of piperine from black pepper c) Isolation of β -carotene from carrots d) Isolation of lycopene from tomatoes e) Isolation of limonene from lemon peel f) Isolation of euginol from cloves	Learn about the Isolation of natural products.
Π	Estimation of Drugs by Instrumental Methods: (At least Four)	a) Assay of sulfanilamide by Potentiometry. b) Assay of Riboflavin by Colorimetry. c)Assay of ascorbic acid by Colorimetry. d) Assay of Diazepam by UV-Vis Spectrophotometer. e) Assay of Riboflavin by UV-Vis Spectrophotometer. f) Estimation of carbohydrates, amino acids, proteins by UV-Vis spectrophotometer. g) Determinationof Hammett constants and determine its substitution effect. i) Benzoic acid, ii) P-Nitro Benzoic acid, iii) P- Methoxy Benzoic acid, iv) PMethyl benzoic acid, v) P-Chlorobenzoic acid. (Out of two compounds one compound must be benzoic acid and another should be substituted benzoic acid is given to the students)	Develops the techniques for the estimation of drugs by Instrumental Methods.

Specify Course Outcome: To trained the estimation of different organic molecules in day to day's life chemistry.

Specify Program Outcome: Gain the practical knowledge to estimate the drug molecules by instrumentation methods

Signature of Teachers: Dr. N. S. Kaminwar

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) 2022-23

Name of Teacher: Dr. S. B. Patwari, Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar, Dr. H. M.

Kasralikar

Department: Chemistry **Program:** M. Sc. SY Semester-IV **Subject**: Chemistry

Course Code: L OCH -528 Paper Title: Project P-XXIII

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι		Literature Survey, Studies of Reactions, Synthesis, Mechanism, Isolation of Natural Products, Standardization of Reaction Conditions, New Synthetic Methods etc.	To develop research aptitude in students.

Specify Course Outcome: Development of practical skill and research aptitude in the students.

Specify Program Outcome: Development of practical skill and research aptitude in the students.

Signature of Teacher: Dr. S. B. Patwari Dr. N. S. Kaminwar Mr. S. L. Nakkalwar,

Dr. H. M. Kasralikar